

COMPONENTI PNEUMATICI ed OLEODINAMICI - AUTOMAZIONE INDUSTRIALE

Via G.Rossini 80 - 20025 LEGNANO (MI) - ITALY - Tel: +39.0331.455647 - Fax: +39.0331.457175 VAT (P.IVA): 12627630150 - www.generalmatic.com - generalmatic@generalmatic.com

MINICILINDRI PNEUMATICI Ø12 ÷ Ø25 STANDARD ISO 6432

<0> INDICE DEI CONTENUTI:

- <1> Caratteristiche tecniche
- <2> Codici per l'ordinazione
- <3> Dimensioni di ingombro ø12 ÷ ø25
- <4> Fissaggi ISO
- <5> Applicazioni tipiche
- <6> Dimensionamento
- <7> Download versione .pdf di questo file

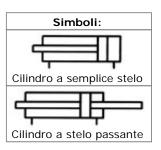
<1> CARATTERISTICHE TECNICHE:

Costruiti secondo lo standard ISO 6432

Cilindri a doppio effetto con smorzatori d'urto elastici alle estremità.

Pressione massima di esercizio: 10 bar Temperatura ambiente: $-10^{\circ}\text{C} \div +80^{\circ}\text{C}$ Temperatura fluido: $-0^{\circ}\text{C} \div +40^{\circ}\text{C}$

Fluido di lavoro: aria compressa filtrata, non lubrificata


Testate e camicia in alluminio anodizzato

Stelo in acciaio INOX Aisi 304

Pistone: magnetico

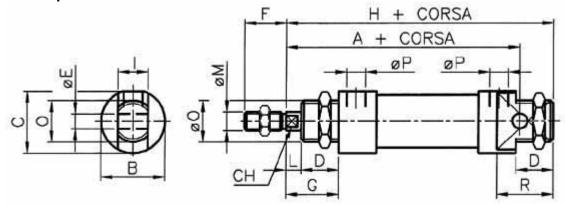
Fornito con dado di fissaggio DM00 e dado sullo stelo DS00. Disponibile anche a semplice effetto con ritorno a molla.

Ritorna a: <0> Indice dei contenuti

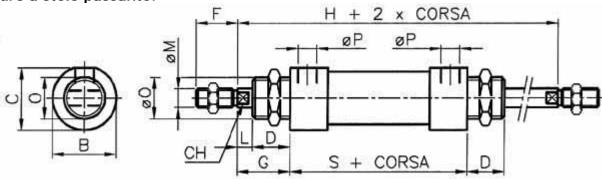
<2> CODICI PER L'ORDINAZIONE:

Cilindri pneumatici doppio effetto ø12 ÷ ø25:

Dado/i sullo stelo tipo DS00 e sulla/e testata/e lato stelo, tipo DM00, compreso/i.


```
CS1M012050ND
                COSTRUZIONE DEL CILINDRO:
                P = semplice effetto, molla posteriore
               A = semplice effetto, molla anteriore
          +--- D = doppio effetto standard
               GUARNIZIONI:
               V = Tutte in FKM (temperatura -20°C ÷ +150°C)
               W = Solo guarnizione stelo in FKM per ambienti aggressivi
            --- N = Guarnizioni standard
                CORSA:
           ---- 050 = corsa in mm (010, 050, 080, 100, ...)
               ALESAGGIO:
         ----- 12 = alesaggio in mm (12, 16, 20, 25)
                TIPO DI CILINDRO ISO 6432:
                CS1MP = cilindro con pistone magnetico, doppio stelo passante inox
       ----- CS1M0 = cilindro con pistone magnetico, semplice stelo inox
```

Fissaggi:


Ritorna a: <0> Indice dei contenuti

<3> DIMENSIONI DI INGOMBRO:

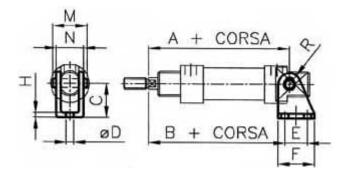
Cilindro a semplice stelo:

Cilindro a stelo passante:

Dimensioni d'ingombro:

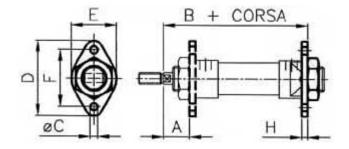
Alesaggio Bore	А	В	С	СН	D	E	F	G	н	ı	L	М	N	О	Р	R	s
12	75	18	17.2	5	15	6	16	22	93.5	12	7	M6x1	9	M16x1.5	M5	22	49.5
16	82	22	21.2	5	15	6	16	22	100	12	7	M6x1	9	M16x1.5	M5	22	56
20	95	28	26.2	7	19	8	20	24	116	16	5	M8x1.25	12	M22x1.5	G1/8"	30	68
25	104	34	32.5	8	20	8	22	28	125	16	8	M10x1.25	12	M22x1.5	G1/8"	30	69

Corse standard:

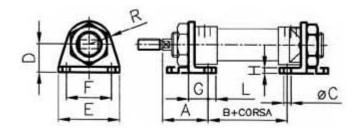

		Corse standard (X)												
Alesaggio Bore	10	25	50	80	100	125	160	200	250	300	350	400	450	500
12	Х	Х	Х	Х	Х	Х	Х							
16	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
20	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
25	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Ritorna a: <0> Indice dei contenuti

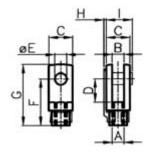
<4> FISSAGGI ISO:


Tutti i cilindri sono forniti con dado/i DS00 sullo stelo e DM00 sulla/e testata lato stelo. Le viti per il fissaggio al telaio della macchina sono escluse.

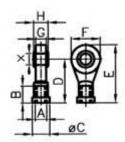
2903 - Controcerniera in acciaio: (perno con seeger incluso)


Alesaggio Bore	Α	В	С	D	E	F	н	м	N	R
12	75	73	27	5.5	15	25	3	23	18	7
16	82	80	27	5.5	15	25	3	23	18	7
20	95	91	30	6.6	20	32	4	30	24	10
25	104	100	30	6.6	20	32	4	30	24	10

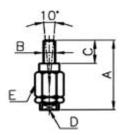
2907 - Flangia in acciaio: (senza dado DM00)


Alesaggio Bore	Α	В	С	D	E	F	н
12	18	77	5.5	52	30	40	4
16	18	84	5.5	52	30	40	4
20	19	99	6.6	66	40	50	5
25	23	107	6.6	66	40	50	5

2908 - Piedino singolo in acciaio: (qtà 1 pz, senza dado DM00)


Alesaggio Bore	A	В	С	D	E	F	G	н	L	R
12	32	31	5.5	20	42	32	14	4	7	13
16	32	38	5.5	20	42	32	14	4	7	13
20	36	46	6.6	25	54	40	17	5	7	20
25	40	50	6.6	25	54	40	17	5	7	20

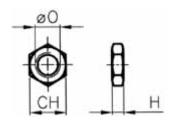
FF00 - Forcella in acciaio: (con clips di sicurezza, senza dado DS00)


Alesaggio Bore	Α	В	С	D	E	F	G	н	ı
12	M6x1	6	12	12	6	24	31	4	17
16	M6x1	6	12	12	6	24	31	4	17
20	M8x1.25	8	16	16	8	32	42	6	23
25	M10x1.25	10	20	20	10	40	52	6	27

KJ00 - Forcella oscillante per stelo in acciaio: (senza dado DS00)


Alesaggio Bore	А	В	С	D	E	F	G	н	x
12	M6x1	12	13	30	40	20	6.8	9	6
16	M6x1	12	13	30	40	20	6.8	9	6
20	M8x1.25	16	16	36	48	24	9	12	8
25	M10x1.25	20	19	43	57	28	10.5	14	10

KK00 - Autoallineatore in acciaio: (senza dado DS00)


Alesaggio Bore	А	В	С	D	E
12	35	M6x1	10	CH 7	CH 13
16	35	M6x1	10	CH 7	CH 13
20	57	M8x1.25	20	CH 11	CH 17
25	71	M10x1.25	20	CH 19	CH 30

DM00 - Dado di fissaggio testate:

Alesaggio Bore	сн	н	0
12	24	8	M16x1.5
16	24	8	M16x1.5
20	32	10	M22x1.5
25	32	10	M22x1.5

DS00 - Dado sullo stelo:

Alesaggio СН О **Bore** 12 10 M6x1 16 10 4 M6x1 20 13 5 M8x1.25 17 25 6 M10x1.25

Ritorna a: <0> Indice dei contenuti

<5> APPLICAZIONI TIPICHE:

Alcune applicazioni tipiche per questo tipo di mini cilindro pneumatico:

- Piccole movimentazioni lineari in genere
- Sollevamento carichi modesti
- Apertura e chiusura porte o saracinesche
- Chiusura ghigliottine o valvole a farfalla
- Attuazione di bracci meccanici o leverismi

Ritorna a: <0> Indice dei contenuti

<6> DIMENSIONAMENTO:

Calcolo della forza in spinta:

$$F_{[kg]} = \frac{\left(\frac{\pi \cdot D^2}{4}\right) \cdot p}{100}$$

Calcolo della forza in tiro (o spinta/tiro per cilindri con stelo passante):

$$F_{[kg]} = \frac{\left(\frac{\pi \cdot D^2}{4} - \frac{\pi \cdot d^2}{4}\right) \cdot p}{100}$$

Calcolo del consumo d'aria:

$$Q_{[nl/min]} = 60 \cdot \frac{\left(\frac{\pi \cdot D^2}{4}\right) \cdot c \cdot \left(p+1\right)}{1'000'000 \cdot t}$$

Nota: considerare comunque un consumo effettivo pari a circa il 40% ÷ 50% in più rispetto al valore calcolato a causa del consumo d'aria nei tubi e nelle valvole di comando.

Legenda:

Simbolo	Descrizione	Unità di misura
С	Corsa	[mm]
D	Alesaggio	[mm]
d	Diametro stelo	[mm]
F	Forza	[kg]
р	Pressione aria compressa (relativa)	[bar] ~ [atm]
Q	Portata	[n_litri/min]
t	Tempo per percorrere la corsa c	[sec]

Ritorna a: <0> Indice dei contenuti

Generalmatic srl - Via Rossini 80 - 20025 LEGNANO (MI) ITALY - VAT (P.IVA): 12627630150
Tel:+39.0331.455647 - Fax:+39.0331.457175 - www.generalmatic.com - generalmatic@generalmatic.com
Aggiornato il: 15-Giu-2010 - Visite: 5 - Versione: 15.01.01 - Copyright © Generalmatic srl 1998÷2010