

COMPONENTI PNEUMATICI ed OLEODINAMICI - AUTOMAZIONE INDUSTRIALE

Via Rossini 80 - 20025 LEGNANO (MI) - ITALY - Phone: +39.0331.455647 - Fax: +39.0331.457175 P.IVA (VAT): IT12627630150 - www.generalmatic.com - generalmatic@generalmatic.com

DECELERATORI IDRAULICI AUTOCOMPENSANTI E REGOLABILI

<0> INDICE DEI CONTENUTI:

- <1> Informazioni generali
- <2> Caratteristiche tecniche
- <3> Esempi di calcolo e dimensionamento
- <4> Deceleratori industriali autocompensanti
- <5> Deceleratori industriali regolabili
- <6> Esempi di fissaggio
- <7> Applicazioni tipiche
- <8> Download versione .pdf di questo file

<1> INFORMAZIONI GENERALI:

Caratteristiche costruttive:

Praticamente tutti i processi di produzione prevedono il movimento di qualche componente. Qualunque cambiamento di direzione o arresto di un oggetto in movimento richiede la dissipazione di energia cinetica che può tradursi in dannose forze d'urto applicate all'apparecchiatura. Molti dei metodi tradizionali per assorbire energia cinetica quali molle, paracolpi in gomma, cilindri di frenata e di ammortizzamento, possono contribuire ad assorbire gli urti ma non a dissipare uniformemente l' energia cinetica.

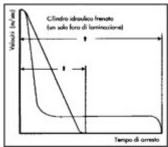
La soluzione ideale consiste nell'assorbire linearmente l' energia dell'oggetto in movimento. Questo risultato può essere ottenuto utilizzando i Deceleratori industriali Generalmatic s.r.l. che realizzano una decelerazione uniforme su tutta la corsa. I Deceleratori industriali Generalmatic s.r.l. eliminano le sollecitazioni dovute agli urti arrestando masse in movimento dolcemente ed in tutta sicurezza con la più piccola forza possibile nel tempo più breve possibile.

Come assorbire gli urti:

Semplici deceleratori, molle, paracolpi ed ammortizzatori pneumatici non possono eguagliare le prestazioni dei Deceleratori Generalmatic srl. I Deceleratori Industriali Generalmatic s.r.l. lavorano come una mano che afferra una palla, adattandosi alla velocità ed alla massa dell'oggetto in movimento e portandolo dolcemente ed uniformemente al completo arresto. L' energia dissipata al loro interno viene poi trasmessa sotto forma di calore all' ambiente circostante.

Esistono anche altri componenti che realizzano lo scopo, ma con risultati

ben più scadenti. Molle e paracolpi non dissipano energia : la accumulano per poi ricederla a fine decelerazione. Anche se l' oggetto in movimento viene arrestato, esso rimbalza provocando fatica e cedimenti strutturali prematuri.


Gli ammortizzatori pneumatici rappresentano una soluzione migliore in quanto dissipano l'energia poiché generano notevoli perdite fluidodinamiche, ma a causa della comprimibilità dell' aria la forza resistente massima viene ottenuta alla fine della corsa. Questo può portare a sollecitazioni eccessive dei componenti.

I cilindri idraulici frenati provocano sollecitazioni ancora maggiori in quanto generano all'inizio della corsa un picco di resistenza che diminuisce poi rapidamente.

Tempo di arresto:

I Deceleratori Industriali Generalmatic s.r.l. arrestano un oggetto in movimento in un terzo del tempo necessario con un cilindro idraulico frenato o un ammortizzatore pneumatico. In breve i Ns. deceleratori "rallentano meglio" il carico, agendo efficacemente lungo tutta la corsa disponibile. I tempi ciclo vengono ridotti consentendo una maggiore produttività.

Ritorna a: <0> Indice dei contenuti

<2> CARATTERISTICHE TECNICHE:

Velocità di impatto: 0.15 ÷ 4.5 m/s.

Temperatura di funzionamento: da -40 a +80 °C.

Massa equivalente: da 0,7 a 68040 kg.

Corpo: in acciaio brunito per ottenere la migliore dissipazione del calore. **Stelo del pistone:** in acciaio ad alta resistenza temprato e cromato.

Esecuzione: con accumulatore olio interno e molla di richiamo.

Versione: autocompensante con forza di decelerazione fissa o regolabile tramite ghiera.

Deviazione urto dall'asse: ± 3 ° max.

Ritorna a: <0> Indice dei contenuti

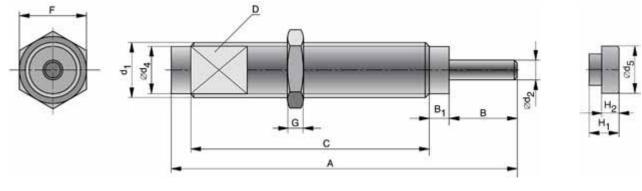
<3> ESEMPI DI CALCOLO E DIMENSIONAMENTO:

Esempio	Energia dissipata per ogni ciclo [J]=[N·m]	Energia dissipata oraria [J]=[N⋅m]	Massa Equivalente [kg]	Spinta sul supporto [N]
**************************************	$W_3 = \frac{1}{2} \cdot m \cdot V^2$	$W_4 = W_3 \cdot N$	$m_{eq} = m$	$T = \frac{2.5 \cdot W_3}{s}$
	$W_3 = \frac{1}{2} \cdot m \cdot V^2 + \mu \cdot m \cdot g \cdot s$	$W_4 = W_3 \cdot N$	$m_{eq} = \frac{2 \cdot W_3}{V^2}$	$T = \frac{2.5 \cdot W_3}{s}$
	Carico orizzontale: $W_3 = \frac{1}{2} \cdot m \cdot V^2 + F \cdot s$ Carico verticale in discesa: $W_3 = \frac{1}{2} \cdot m \cdot V^2 + (F + m \cdot g) \cdot s$ Carico verticale in salita: $W_3 = \frac{1}{2} \cdot m \cdot V^2 + (F - m \cdot g) \cdot s$	$W_4 = W_3 \cdot N$	$m_{eq} = \frac{2 \cdot W_3}{V^2}$	$T = \frac{2.5 \cdot W_3}{s}$
	$W_3 = \frac{1}{2} \cdot m \cdot V^2 + m \cdot g \cdot s$	$W_4 = W_3 \cdot N$	$m_{eq} = \frac{2 \cdot W_3}{V^2}$	$T = \frac{2.5 \cdot W_3}{s}$
VD M M	$W_3 = \frac{1}{2} \left[\frac{m}{2} \right] V^2 + \frac{M \cdot s}{R}$	$W_4 = W_3 \cdot N$	$m_{eq} = \frac{2 \cdot W_3}{\left(\frac{V \cdot R}{L}\right)^2}$	$T = \frac{2.5 \cdot W_3}{s}$
V N N N N N N N N N N N N N N N N N N N	$W_3 = \frac{1}{2} \cdot m \cdot V^2 + \frac{M \cdot s}{R}$	$W_4 = W_3 \cdot N$	$m_{eq} = \frac{2 \cdot W_3}{\left(\frac{V \cdot R}{L}\right)^2}$	$T = \frac{2.5 \cdot W_3}{s}$

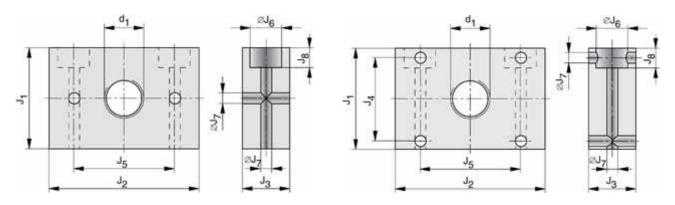
	Simbologia adottata:										
W ₃	Energia totale per ciclo	[J]=[Nm]									
W ₄	Energia totale per ora	[J]=[Nm]									
m _{eq}	Massa equivalente	[kg]									
m	Massa da decelerare	[kg]									
V	Velocita' della massa al momento dell'impatto	[m/s]									
F	Forza motrice	[N]									
M	Coppia motrice	[Nm]									
Т	Spinta max sul supporto	[N]									
R	Raggio	[m]									
N	Numero di cicli all'ora	[cicli/h]									
g=9.81	Accelerazione di gravità	[m/s ²]									
μ	Coefficiente di attrito dinamico	[]									
s	Corsa del deceleratore in metri	[m]=[mm/1000]									

Ritorna a: <0> Indice dei contenuti

<4> DECELERATORI INDUSTRIALI AUTOCOMPENSANTI:


Esempi di modelli disponibili:

Principali caratteristiche di assorbimento energia d'urto e codice ricambi e accessori:


Codice	s Corsa [mm] = [m·1000]	equiv	Massa valente kg] Massimo	W₃ Energia per ciclo [J] Massimo	W₄ Energia per ora [J] Massimo	Peso [kg]	Forza di ritorno [N] Massimo	Testina insono- rizzante	Dado aggiunto (primo incluso)	Flangia	
DEC10N	6,5	0,7	2,2	2,8	22500	0,02	6	INCLUSO	LN10	UM10	
DEC10SN	6,5	1,8	5,4	2,8	22500	0,02	6	INCLUSO	LN10	UM10	
DEC10S2N	6,5	4,6	13,6	2,8	22500	0,02	6	INCLUSO	LN10	UM10	
DEC12N	10	0,3	1,1	9,0	28200	0,03	9	INCLUSO	LN12	UM12	
DEC12SN	10	0,9	4,8	9,0	28200	0,03	9	INCLUSO	LN12	UM12	
DEC12S2N	10	2,7	36,2	9,0	28200	0,03	9	INCLUSO	LN12	UM12	
DEC14	12,5	0,9	10	17	34000	0,13	7	NB14	LN14	UM14	
DEC14S	12,5	8,6	86	17	34000	0,13	7	NB14	LN14	UM14	
DEC14S2	12,5	68	205	17	34000	0,13	7	NB14	LN14	UM14	
DEC20	12,5	2,3	25	25	45000	0,18	10	NB20	LN20	UM20	
DEC20X25	24,6	2,3	16	50,8	68000	0,21	10	NB20	LN20	UM20	
DEC20S	12,5	23	230	25	45000	0,18	10	NB20	LN20	UM20	
DEC20SX25	24,6	9	59	50,8	68000	0,21	10	NB20	LN20	UM20	
DEC20S2	12,5	182	910	25	45000	0,18	10	NB20	LN20	UM20	
DEC20S2X25	24,6	36	227	50,8	68000	0,21	10	NB20	LN20	UM20	
DEC25	25,4	9	136	68	68000	0,33	37	NBI25	LN25	UM25	
DEC25S	25,4	113	1130	68	68000	0,33	37	NBI25	LN25	UM25	
DEC25S2	25,4	400	2273	68	68000	0,33	37	NBI25	LN25	UM25	

Principali dimensioni di ingombro dei deceleratori autocompensanti:

Deceleratore industriale autocompensante

Testina insonorizzante

Flangia di fissaggio DEC10-DEC12-DEC14

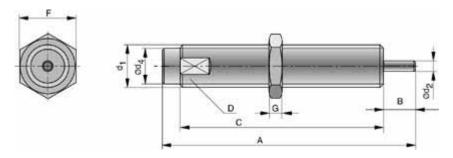
Flangia di fissaggio DEC20-DEC25

								Dir	nens	ioni [m	m]									
Codice	Α	В	В1	С	D	d1	ød2	ød4	ød5	F	G	H1	Н2	J1	J2	J3	J4	J5	øJ6	øJ7	J8
DEC10N	57.6	6.5	5.0	33.0		M10x1	3.2	8.4	7.6	12.0	4	8.0	3.0	25.4	38	12		25.4	8	4.5	5
DEC10SN	57.6	6.5	5.0	33.0		M10x1	3.2	8.4	7.6	12.0	4	8.0	3.0	25.4	38	12		25.4	8	4.5	5
DEC10S2N	57.6	6.5	5.0	33.0		M10x1	3.2	8.4	7.6	12.0	4	8.0	3.0	25.4	38	12		25.4	8	4.5	5
DEC12N	67	10	3.0	44		M12x1	3.2	10.4	7.6	14	5	8	3	25.4	38	12		25.4	8	4.5	5
DEC12SN	67	10	3.0	44		M12x1	3.2	10.4	7.6	14	5	8	3	25.4	38	12		25.4	8	4.5	5
DEC12S2N	67	10	3.0	44		M12x1	3.2	10.4	7.6	14	5	8	3	25.4	38	12		25.4	8	4.5	5
DEC14	87	12	4	61	12	M14x1.5	4.8	12	11.9	17	5	10.9	6.9	29	45	16		35	8	4.5	5
DEC14S	87	12	4	61	12	M14x1.5	4.8	12	11.9	17	5	10.9	6.9	29	45	16		35	8	4.5	5
DEC14S2	87	12	4	61	12	M14x1.5	4.8	12	11.9	17	5	10.9	6.9	29	45	16		35	8	4.5	5
DEC20	89	12	5.6	61.7	17	M20x1.5	6.4	17	17	23.9	6	10.7	4.7	35	46	16	25.4	35	10.4	5.5	10.4
DEC20X25	140.5	24.6	5.6	100.3	17	M20x1.5	6.4	17	17	25.4	6	10.7	4.7	35	46	16	25.4	35	10.4	5.5	10.4
DEC20S	89	12	5.6	61.7	17	M20x1.5	6.4	17	17	23.9	6	10.7	4.7	35	46	16	25.4	35	10.4	5.5	10.4
DEC20SX25	140.5	24.6	5.6	100.3	17	M20x1.5	6.4	17	17	25.4	6	10.7	4.7	35	46	16	25.4	35	10.4	5.5	10.4
DEC20S2	89	12	5.6	61.7	17	M20x1.5	6.4	17	17	23.9	6	10.7	4.7	35	46	16	25.4	35	10.4	5.5	10.4
DEC20S2X25	140.5	24.6	5.6	100.3	17	M20x1.5	6.4	17	17	25.4	6	10.7	4.7	35	46	16	25.4	35	10.4	5.5	10.4
DEC25	149.1	24.6	4.6	107.2	22	M25x1.5	7.9	22.4	22.3	30	8	11	4.7	35	47	16	25.5	35	10.4	5.5	10.4
DEC25S	149.1	24.6	4.6	107.2	22	M25x1.5	7.9	22.4	22.3	30	8	11	4.7	35	47	16	25.5	35	10.4	5.5	10.4
DEC25S2	149.1	24.6	4.6	107.2	22	M25x1.5	7.9	22.4	22.3	30	8	11	4.7	35	47	16	25.5	35	10.4	5.5	10.4

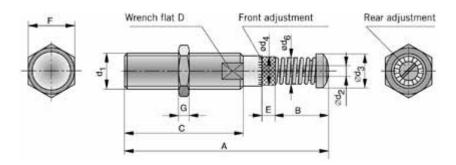
Ritorna a: <0> Indice dei contenuti

<5> DECELERATORI INDUSTRIALI REGOLABILI:

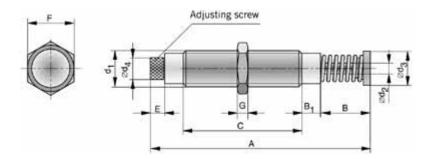
Esempi di modelli:

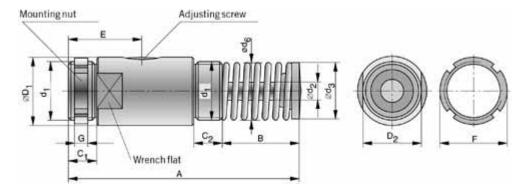

Codici ricambi ed accessori:

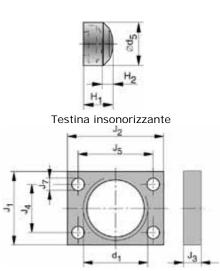
Codice	Testina insonorizzante	Dado aggiunto (primo incluso)	Flangia rettangolare	Flangia quadrata
DEC14X12	SP14X12	LN20	UM20	
DEC38X1D	SP38	LN25	UM25	
DECLD12X1M		LN12M	RF12M	
DECLD12X2M		LN12M	RF12M	
DEC12X1	SP12	LN12	RF12	
DEC12X2	SP12	LN12	RF12	
DEC34X1	SP34	LN34	RF34	SF34
DEC34X2	SP34	LN34	RF34	SF34
DEC34X3	SP34	LN34	RF34	SF34
DEC118X2	SP118	LN118		SF118
DEC118X4	SP118	LN118		SF118
DEC118X6	SP118	LN118		SF118

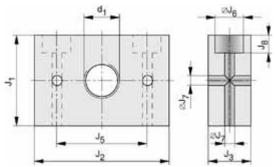

Principali caratteristiche di assorbimento energia d'urto:

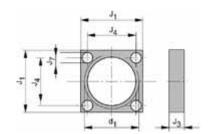
Codice	s Corsa [mm] =	equiv	Massa valente kg]	W₃ Energia per ciclo [J]	W₄ Energia per ora [J]	Peso [kg]	Forza di ritorno [N]	
	[m·1000]	Minimo	Massimo	Massimo	Massimo		Massimo	
DEC14X12	12.7	1.0	190	20	35000	0.18	5	
DEC38X1D	25.4	4.5	546	70	68000	0.24	37	
DECLD12X1M	25.4	4.5	1360	170	85000	0.75	82	
DECLD12X2M	50.8	9.5	2720	340	98000	0.92	128	
DEC12X1	25.4	4.5	1225	153	84700	0.63	82	
DEC12X2	50.8	9.5	2450	305	98300	0.80	128	
DEC34X1	25.4	9	8163	339	124300	1.44	92	
DEC34X2	50.8	16	14500	678	146800	1.80	92	
DEC34X3	76	23	20866	1017	180776	2.24	105	
DEC118X2	50.8	54	22680	1808	169478	3.72	151	
DEC118X4	102	73	45360	3616	225970	5.04	200	
DEC118X6	152	91	68040	5423	282463	6.62	187	


Principali dimensioni di ingombro dei deceleratori regolabili:


Deceleratore industriale regolabile DEC14X12


Deceleratore industriale regolabile DEC38X1D

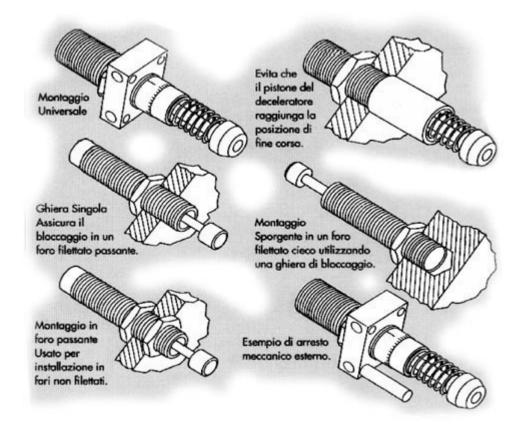

Deceleratore industriale regolabile DECLD12X_M

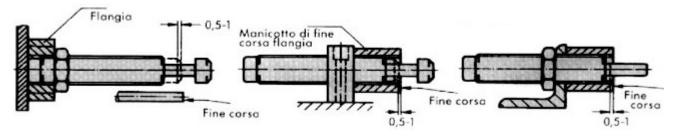

Deceleratore industriale regolabile DEC12X_ DEC34X_ DEC118X_

Flangia rettangolare DECLD12X_M DEC12X_ DEC34X_

Flangia rettangolare DEC14X12 DEC38X1D

Flangia quadrata DEC34X_ DEC118X_


O a di a a		Dimensioni [mm]													
Codice	Α	В	В1	С	C2	D	øD1	D2	d1	ød2	ød3	ød4	ød5	ød6	
DEC14X12	86.7	17.7		62		17			M20x1.5	4.8		16.2	12		
DEC38X1D	121.2	35.5		61.5		22			M25x1.5	7.9	19.9	22.7	22.1	18.5	
DECLD12X1M	165.1	23.8	6	110					M36x1.5	9.5	25.4	22.5			
DECLD12X2M	215.9	49.2	6	134					M36x1.5	9.5	25.4	22.5			
DEC12X1	138.1	55.5			16		38	35	M33x1.5	9.5	25.4		31.8	25.4	
DEC12X2	189	81			16		38	35	M33x1.5	9.5	25.4		31.8	25.4	
DEC34X1	144.4	50			23		57.2	50	M42x1.5	12.8	38		44.5	34.7	
DEC34X2	195.2	75.4			23		57.2	50	M42x1.5	12.8	38		44.5	34.7	
DEC34X3	246	100.8			23		57.2	50	M42x1.5	12.8	38		44.5	38.1	
DEC118X2	225.6	85.9			26		76.2	69.9	M64x2	19.1	50.8		57.2	47.9	
DEC118X4	327.2	136.7			26		76.2	69.9	M64x2	19.1	50.8		57.2	50.8	
DEC118X6	450.9	209.6			26		76.2	69.9	M64x2	19.1	50.8		57.2	48.3	


On the c	Dimensioni [mm]													
Codice	E	F	G	H1	H2	J1	J2	J3	J4	J5	øJ6	øJ7	J8	
DEC14X12		23	8	9.4	6	35	47	16	25.5	35	10	5.5	10	
DEC38X1D	12.7	30	8	12.2	6.4	35	47	16	25.5	35	10	5.5	10	
DECLD12X1M	14.7	41.3	6.7			41	54	9.5	28	42				
DECLD12X2M	14.7	41.3	6.7			41	54	9.5	28	42				
DEC12X1	41.3	38	6.4	19.1	11.2	41	54	9.5	28	42		7		
DEC12X2	41.3	38	6.4	19.1	11.2	41	54	9.5	28	42		7		
DEC34X1	47.2	57.2	9.5	25.4	17.5	57.2	76.2	12.7	41.3	60.3		8.7		
DEC34X2	59.5	57.2	9.5	25.4	17.5	57.2	76.2	12.7	41.3	60.3		8.7		
DEC34X3	72.6	57.2	9.5	25.4	17.5	57.2	76.2	12.7	41.3	60.3		8.7		
DEC118X2	69.9	76.2	9.5	25.4	17.5	88.9		15.9	69.9			10.3		
DEC118X4	95.3	76.2	9.5	25.4	17.5	88.9		15.9	69.9			10.3		
DEC118X6	120.7	76.2	9.5	25.4	17.5	88.9		15.9	69.9			10.3		

Ritorna a: <0> Indice dei contenuti

<6> ESEMPI DI FISSAGGIO:

Esempi di montaggio e bloccaggio al telaio dei deceleratori idraulici industriali:

Ritorna a: <0> Indice dei contenuti

<7> APPLICAZIONI TIPICHE:

Alcune applicazioni tipiche per questo tipo di deceleratori idraulici autocompensanti e regolabili sono:

- Frenatura di carrelli lanciati su rotaie
- Limitazione della forza d'urto di parti mobili delle macchine
- Applicazioni varie con moto oscillante e periodico
- Macchine automatiche, piccole presse, tavole rotanti
- Robot industriali e teste automatizzate di manipolatori industriali
- Limitazione dell'urto nella chiusura di porte, portoni o sportelli

Ritorna a: <0> Indice dei contenuti

Generalmatic srl - Via Rossini 80 - 20025 LEGNANO (MI) ITALY - P.IVA(VAT): IT12627630150 - C.F.: 01506850138 Phone: +39.0331.455647 - Fax: +39.0331.457175 - www.generalmatic.com - generalmatic@generalmatic.com Visite di DEC.php: 8 - Aggiornato il: 03-Apr-2012 - Codici - Sitemap - Copyright © Generalmatic srl 1998÷2012